BE ATKT EXAM 2013

Branch: IT Engineering

Semester: VI

1	Define dual of LPP.						
2	What is the importance of the duality concept?						
3	State the optimality condition in dual simplex method.						
4	What is the difference between regular simplex method and dual simplex						
	method?						
5	What do you under	stand by	y transpor	tation probl	em?		
6	List any three approaches used with T.P for determining the starting						
	solution.						
	What do you mean	by dege	neracy in	a T.P?			
7	Explain Basic Feasi	ble Solu	tion with s	suitable exa	mple.		
8	Explain Optimal Solution with suitable example.						
9	Explain Occupied c	ells and	non- Occu	pied cells w	rith suitable o	example	. Basic
	Feasible Solution						
10	Explain Rim condit	ion with	suitable e	example.			
11	Explain Unbalanced Transportation Problem						
	with suitable example.						
12	A manufacturer has to supply his customer with 600 units of his product						
	per year. Shortages are not allowed and the storage cost amounts to Rs 0.60						
	per unit per year. T		• •). Find the op	otimum 1	un
	size and the minim						
13	The standard weig	-			-		
	basic ingredients B1 and B2. B1 costs Rs. 5 per kg and B2 costs Rs 8 per kg.						
	Strength considerations dictate that the brick should contain not more than						
	4 kg of B1 and a minimum of 2 kg of B2. Since the demand for the product is					duct is	
	likely to be related to the price of the brick, find out graphically the						
	minimum cost of the brick satisfying the above conditions.						
14	A small project is composed of seven activities whose time estimates are					are	
	listed in the table a	is follow				_	
		Activity	Estim: Optimistic	ated duration (v Most likely	veeks) Pessimistic	_	
		1-2	1	1	7	-	
		1-3	1	4	7	_	
		2-4 2-5	2	2	8	_	
		3-5	2	5	14	-	
		4-6	2	5	8		
		5-6	3	6	15		
	Draw the project network						
	1. Calculate the variance and standard deviation of project length						
	2. What is the probability that the project will be completed 4 weeks						
	earlier than exp	ected?					
1 -	.	0					
15	Activity	Optimi		ost likely	Pessimisti	c time	
		time	ti	me			

BE ATKT EXAM 2013

Branch: IT Engineering

Semester: VI

		1-2	1	1	7		
		1-3	1	4	7		
		1-4	2	2	8		
		2-5	1	1	1		
		3-5	2	5	14		
		<u> </u>	2		8		
				5			
	P	5-6	3	6	15		
			am and find ou				
			rd deviation of		-		
	•	inty of comp	leting the proje	ci al least 4 we	eks earner	than expected	
	unie.	time.					
16	Formu	ate the giver	LP problem by	annlying simr	olex method	MAX Z=	
10		Formulate the given LP problem by applying simplex method.MAX Z= 4x+3y Subject to constraints, 2x+y<=1000,x+y<=800, x<=400, y<=700 and					
	-		olve by any me		, -		
17			the role of OR		king proces	s with its	
	applica	-					
18	Determ	ine an initial	basic feasible s	solution to the	following tr	ansportation	
	proble	n by using a	NWCM method				
		D1	D2	D3	D4	Supply	
	S1	11	13	17	14	250	
	S2	16	18	14	10	300	
	S3	21	24	13	10	400	
	Dema	nd 200	225	275	250		
19	Explair	n Degenerate	Solution with s	suitable examp	ole.		
20	Explai	n Non- Deger	erate Solution	with suitable e	example.		
21			earch. Write Char	racteristics and l	limitation of	Operation	
	Researc				D 2 D	0 10 4	
22			Products A,B and				
	respectively. The firm has two machine C and D which requires processing time 4,3,6 and 3,2,4 minutes respectively on each machine for each product. Machine C						
	and D have 2000 and 2500 machine minutes, respectively. The firm must						
	manufacture 100 A's, 200 B's and 500 C's, but not more than 150 A's. Set up linear						
	program	nming Problem	n to maximize the	e profit.		-	
23		•	o solve following			X2	
	Subject	to $X_1 + X_2 <=$	4, $X_1 - X_2 <= 2 X$	$1 >= 0 \text{ and } X_2 >=$	0		
24	What is	an assignmen	t model? Explain	difference betu	een a transpo	ortation and an	
24		-	i moder: Explain		con a transpo		
25		assignment problem Define PERT. What is Critical Path ? Explain Difference between C.P.M and					
	P.E.R.T	•					
26	A mach	A machine costs Rs. 10,000. The following table shows the scrap value of the					
	machine at the end of different years and its maintenance cost up to the end of						

BE ATKT EXAM 2013

Branch: IT Engineering

Semester: VI

	the given year. You are requir	rad to find the accord	ical year of rankaamant			
	1	500	5000			
	2	500	4500			
	3	600	3500			
	4	650	3000			
	5	700	2500			
	6	800	2500			
27	Explain Characteristics of the queuing system. Explain the queuing models					
	indicated by the following notations.					
	i) (M/D/1): (FCFS/ ∞/∞)					
	ii) (M/M/1): (FCFS/N/N)					
	iii) (D/D/1): (FCFS/∞/∞)					
28	What is a replacement problem ? Describe some important replacement situation.					
20	Also discuss group replacement problem.					
29			Give some application of queuing			
	theory.					
30	A self service store employs one cashier at its counter. An average of nine					
	customers arrive every 5 minutes while the cashier can serve 10 customers					
	in 5 minutes. Assuming Poisson distribution for arrival rate and					
	exponential distribution for service rate, find					
	a) Avg. number of customer in the system.b) Avg. number of customer in queue or average queue length.					
	c) Avg. time a customer spends in the system.					
	d) Avg. time a customer waits before being served.					
31	What is Monte-Carlo Simulation? Explain any two method for random number					
	generation.					
32	A chemical mixture consists of three raw materials A, B and C costing Rs. 20, Rs.					
	30 and Rs. 40 per kg. The		xture are as follows:			
	i) The mix must contain at least 20% of B					
	ii) The mix should not contain more than 40% of Aiii) The mix must contain at least 10% of C					
	-		t mix for a batch of 1000 kg of			
	the chemical mixture.	, to find the foust cos	that for a batch of 1000 kg of			
33	Explain Characteristics of	the queuing system. Exp	plain the queuing models			
_	indicated by the following					
	i) (M/D/1): (FCFS/∞/∞)					
	ii) (M/M/1): (FCFS/N/N)					
	iii) (D/D/1): (FCFS/∞/∞)					

BE ATKT EXAM 2013

Branch: IT Engineering

Semester: VI

34	Explain the procedure for determining Minimal Spanning tree			
35	Explain Individual replacement versus group replacement.			
36	A manufacture of furniture makes two products chairs and tables. Processing these Products is done on two machine A and B. A chair requires 2 hours on machine A and 6 hours on Machine B. A table requires5 hours on Machine A and No time on machine B. There are 16 hours of time per day available on Machine A and 30 hours on Machine B. Profit gained by the manufacturer from a Chair and a table is Rs 2 and Rs 10 respectively. Solve this problem graphically to maximize the profit.			
37	Explain BIG-M Method with suitable example.			
38	What is an assignment model ? Explain difference between a transportation and an assignment problem			
39	Define PERT. What is Critical Path? Explain Difference between C.P.M and P.E.R.T.			
40	What is queue? Explain basic element of queues. Give some application of queuing theory.			