COSM Question Bank

BE Sem IV IT (A.T.K.T) Examination – 2013.

Convener: Trupti Manik Examiner: Bhavesh Oza

1	Solve using newton Raphson method $x^3 + 2x^2 + 10x - 20 = 0$								
2	Solve using gauss elimination method to solve the equations: $2x + y + z = 10$, $3x + 2y + 3z =$								
	18, $x + 4y + 9z = 16$.								
3	Given that $\frac{dy}{dt} = x + y^2$, $y(0) = 1$. Using Runge-Kutta fourth order method find								
	approximate value of $y(0,2)$, take step-size 0.1								
4	Evaluate $\int_{0}^{5} \log x dx$ taking 8 subintervals correct to four decimal places by Transzoidal								
	Evaluate $J_1 \log_{10} x dx$, taking 8 subintervals, correct to four declinar places by Trapezoidar method								
5	A train is moving at speed of 30m/sec, suddenly brakes are applied. The speed of the train								
	per second after t seconds is given by the below table. Apply Simpson's three-eighth rule to								
	determi	ine the	distance	e move	d by	the	train ii	n 30	seconds.
					-				
		Time(t)	0	5	10	15	20	25	30
		Speed(y)	30	24	19	16	13	11	10
6	If P is t	the pull requ	ired to lift	a load W	by means	of pulley	block, find	a linear la	w of form
	P=mW	+c connection	ng P and V	V using be	low given	data whe	re P and W	/ are taken	in kg-wt.
	Compu	te	Р	whe	en	W=		200	kg.
		D	10	15	21	25			
		P:	12	15	21	25			
7	Eit out	W:	<u>50</u>	$\frac{1}{1}$	100	120			
1	Fit cub	ic spline and	evaluate y	(1.5)		. 1			
	X:	X0=1	Xl=2	2 X2 =	3 X3=	= 4			
	y:	Y0=1	Y I = 2	$\frac{2}{1}$ Y2=	<u>5 Y3=</u>	= 11	(1	11 .	1 1
8	Using	Lagrange's	iormula,	find the	e values	of I(0)	on the	table give	en below.
		v.	_1	_2	2	Δ			
		$f(\mathbf{x})$	-1	_9	11	69			
9	Solve t	he following	r equations	by Gauss-	seidel iter	ration corr	ect method	upto 3 sig	nificant
-	digits.								
	$20x_1 + 2x_2 + x_3 = 30$								
	$x_1 - 40x_2 + 3x_3 = -75$								
	$2x_1 - x_2$	$x_{2}^{2} + 10 x_{3}^{2} = 3$	0						
		-							
10	Explair	n different ty	pes of Erro	ors with su	itable exar	nples.			
11	Use Runge Kutta second order method to approximate y when x = 0.8 with $\frac{dy}{dy} = \sqrt{x + y}$, x ₀								
	$= 0.4$ and $y_0 = 0.41$.								
12	Evaluate the integral using simpson's one-third rule. $\int_0^1 (4x - 3x^2) dx$, taking n=10.								

13	Use Eulers's method to find an approximate value of y at x=0.1. in five steps, given that $\frac{dy}{dx}$								
	$= x - y^2$ and $y(0) = 1$								
14	Write and explain program for Regula Falsi Method								
15	White Descence for motion incoming								
15	write Program for matrix inversion								
16	Solve using Gauss Seidal method, accurate upto four significant digits.								
	$10x_1 + x_2 + 2x_3 = 44$								
	$2x_1 + 10x_2 + x_3 = 51$								
	$x_1 + 2x_2 + 10 x_3 - 01$								
17	Use modified Euler's method to find the solution in the interval [1,1.5] using step size h=0.1								
	for $\frac{dy}{dx} = xy$ with $y(1) = 5$.								
18	Given a table of values for the function. Fit the second degree polynomial								
	x: 1.0 1.5 2.0 2.5 3.1 4.0								
	y: 1.1 1.3 1.6 2.0 3.4 4.2								
19	Use three iterations of Newton Raphson Method to solve the non-linear equations,								
	$x^2 - y^2 + 7 = 0$, $x - xy + 9 = 0$. Take $(x_0, y_0) = (3.5, 4.5)$ as the initial approximation.								
20	The distance (s) covered by a car in a given time (t) is given below								
	Lime(Minutes) : 10 12 16 17 22 Distance(Km) : 12 15 20 22 32								
	Find the speed of car at time $t = 14$ minutes.								
21	The following data gives pressure and volume of superheated steam								
	V:2 4 6 8 10								
	P: 105 42.7 25.3 16.7 13								
22	Following table shows speed in m/s and time in second of a car								
	t: 0 12 24 36 48 60 72 84 96 108 120								
	v: 0 3.60 10.08 18.90 21.60 18.54 10.26 5.40 4.50 5.40 9.00								
	Using simpson's one-third rule find the distance travelled by the car in 120 second								
23	Use three iterations of Jacobi's method to solve the system of equations								
24	20x + y - 2z - 17 = 0, 2x - 3y + 20z - 25 = 0, 3x + 20y - z + 18 = 0								
24	Given that $\frac{dy}{dx} = x + y^2$, y(0) = 1. Using Runge-Kutta method find approximate value								
	of $y(0.2)$, take step size 0.1								
25	Use Gauss elimination method to solve the equations:								
	2x + y + 2 = 10, 3x + 2y + 32 = 18, x + 4y + 92 = 16. also write pseudo code for this method								
26	From the following data calculate two lines of regression								
	X 16 20 17 21 15								
	Y 50 60 58 60 55								
	(a) Estimate value of Y when $X = 25$								
27	Compute $f'(0.75)$ from the following table								
	x: 0.50 0.75 1.00 1.25 1.50								

		F(x)	0.13	0.42	1.00	1.95	2.35		
28	Find the root of the equation $4\sin x + x^2 = 0$ by Secant method.								
29	Use Lagrange's formula to find third degree polynomial which fits into the data below								
		x:	0	1	3	4			
		F(x)	-12	0	12	24			
	Evaluate the polynomial for $x = 4$.								
30	Suppose that you have the task of measuring the lengths of a bridge and a rivet and come up with								
	9999 and 9 cm respectively. If true values are 10,000 and 10 cm respectively. Compute (a) absolute								
24	error and (2) percentage relative error for each case.								
31	Find the square root of 10 correct upto three decimal place by using newton raphson method.								
32	Fit the le	east square p		ne data					
		v·	_1	0	1	2			
		A. V·	-1	1	2	<u>2</u> 1			
22	Lico 4 th (I.	-2 Kutta motho	to colvo di	$\frac{2}{\sqrt{dx - x^2 + x^2}}$	r^{2} $v(0) = 1$	Evaluato th	a value of v	
55	Use 4 order Runge Rulta method to solve $ay/ax = y^- + x^-$, $y(0) = 1$. Evaluate the value of y								
24	WITELL X=U.1								
54	mean is 3. Variance is 15 and $\mu A = -86$								
35	Find the root of the equation $\cos x = xe^{x}$ using secant method unto four decimal nalces								
36	Write pr	ogram for N	ewton raphr	ison method					
37	Using La	grange's for	mula to find	a polynomia	l of degree t	hree which f	its into the d	ata below:	
		x:	-1	0	1	3			
		f:	2	1	0	-1			
38	Compute the skewness based on the third moment for the following data.								
		Class	0-2	2-4	4-6	6-8	8-10		
		frequency	5	18	42	27	8		
39	Find the	Find the approximate value of y for x=0.1, x=0.2 by Picard's method given $dy/dx = x + y$, y(0) = 1.							
	Check the result with the exact value.								
40	Write program for secant method.								