BE Sem IV IT (A.T.K.T) Examination - 2013.
Convener: Trupti Manik
Examiner: Bhavesh Oza

	$\mathrm{F}(\mathrm{x})$	0.13	0.42	1.00	1.95	2.35	
28	Find the root of the equation $4 \sin x+x^{2}=0$ by Secant method.						
29	Use Lagrange's formula to find third degree polynomial which fits into the data below						
	x :	0	1	3	4		
	$\mathrm{F}(\mathrm{x})$	-12	0	12	24		
	Evaluate the polynomial for $x=4$.						
30	Suppose that you have the task of measuring the lengths of a bridge and a rivet and come up with 9999 and 9 cm respectively. If true values are 10,000 and 10 cm respectively. Compute (a) absolute error and (2) percentage relative error for each case.						
31	Find the square root of 10 correct upto three decimal place by using newton raphson method.						
32	Fit the least square parabola to the data						
	x :	-1	0				
	Y:	-2	1	2	4		
33	Use $4^{\text {th }}$ order Runge Kutta method to solve $\mathrm{dy} / \mathrm{dx}=y^{2}+x^{2}, \mathrm{y}(0)=1$. Evaluate the value of y when $x=0.1$						
34	First three moments of a variable measured by point " 2 " are gradually 1,16 and -40 . Prove that mean is 3 , Variance is 15 and $\mu 4=-86$.						
35	Find the root of the equation $\cos x=x e^{x}$ using secant method upto four decimal palces.						
36	Write program for Newton raphnson method.						
37	Using Lagrange's formula to find a polynomial of degree three which fits into the data below:						
	x :	-1	0				
	f:	2	1	0	-1		
38	Compute the skewness based on the third moment for the following data.						
	Class	0-2	2-4	4-6	6-8	8-10	
	frequency	5	18	42	27	8	
39	Find the approximate value of y for $\mathrm{x}=0.1, \mathrm{x}=0.2$ by Picard's method given $\mathrm{dy} / \mathrm{dx}=\mathrm{x}+\mathrm{y}, \mathrm{y}(0)=1$. Check the result with the exact value.						
40	Write program for secant method.						

