BE Semester- VI (ATKT CE) Question Bank Theory of Computation

All questions carry equal marks (10 marks)

Q. 1	Answer the following 1. In the given relation determine the properties(reflexivity, symmetry, transitivity), which ones the relation has: $\mathrm{R}=\{(1,1),(2,2),(3,3),(1,2)\}$ and $\mathrm{R}=\varnothing$ 2. Show that for any language $\mathrm{L}, \mathrm{L}^{*}=\left(\mathrm{L}^{*}\right)^{*}=(\mathrm{L}+)^{*}=\left(\mathrm{L}^{*}\right)+$ 3. Give the definition of "Transitive Closure of a Relation" using induction.
Q. 2	Answer the following 1. Define regular language and regular expressions. 2. Find regular expression for the following: Language of all string that do not end with 01 . 3. Describe the language corresponding to following: $(1+01)^{*}(0+01)^{*}$
Q. 3	Write Kleene's Theorem part-I, Any regular language can be accepted by a finite automation.
Q. 4	Let M1 and M2 be the FA in fig below for the language L1 and L2, find L 1 U L2 and $\mathrm{L} 1 \cap \mathrm{~L} 2$. (a) (b)
Q. 5	Use the pumping lemma to show that following language is not regular: $\mathrm{L}=$ $\left\{x y \mid x, y \in\{0,1\}^{*}\right.$ and y is either x or xr$\}$
Q. 6	Answer the following 1.Find context free grammar generating following language \{aibjck \|i=j or $\mathrm{i}=\mathrm{k}$ \} 2. Show that CFG $\mathrm{Sa}\|\mathrm{Sa}\| \mathrm{bSS}\|\mathrm{SSb}\| \mathrm{SbS}$ is ambiguous
Q. 7	Write TM accepting Palindrome
Q. 8	Write TM accepting $\left\{\mathrm{ss} \mid \mathrm{s} \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$
Q. 9	For the language $L=\left\{x^{\prime}{ }^{r} / x \in\{a, b\}^{*}\right\}$ design a PDA(Push Down Automata) and trace it for string "bacab"
Q. 10	Prove that $\sqrt{2}$ (square root of 2) is Irrational by method of Contradiction
Q. 11	Define one-to-one, onto and bijection function. Check whether the function $\mathbf{f}: \mathbf{R} \rightarrow \mathbf{R}+, \mathbf{f}(\mathbf{x})=\mathbf{x}^{2}$ is "one to one" or "onto"
Q. 12	Write short notes on the following: (i) The Primitive Recursive Functions. (ii) The Sets P, NP, PSpace and NPSpace
Q. 13	Write short notes on the following: (i)Top Down Parsing And Bottom Up Parsing. (ii)Universal Turing Machine.

Q. 26	Explain Universal TM and Church Turing Thesis
Q. 27	Differentiate the NP Hard and NP Complete Problems
Q. 28	Draw an DFA that recognize the language of all strings of 0's and 1's of length at least 1 that, if they were interpreted as binary representation of integers, would represent evenly divisible by 3 . Your DFA should accept the string 0 but no other strings with leading 0 's.
Q. 29	Find CFG for the following languages. 1. $L=\{$ ai bjak $\mid j>i+k\}$ 2. $\mathrm{L}=\{$ ai bjck $\mid \mathrm{i}=\mathrm{j}$ or $\mathrm{j}=\mathrm{k}\}$
Q. 30	Draw a transition diagram for a Turing machine accepting the following language. $\{$ an bn cn $\mid \mathrm{n} \geq 0\}$
Q. 31	Define Nondeterministic Finite Automata (NFA) and write down recursive definition of δ^{*} for NFA- Λ.
Q. 32	Give the recursive definition of PAL of Palindrome over any alphabet Σ
Q. 33	Write definition of Finite Automata and draw FA for the strings: (i) The string with next to last symbol as 0 . (ii) The string with number of 0 s odd and number of 1 s odd
Q. 34	Using Principle of Mathematical Induction, prove that for every $\mathrm{n}>=1$, $\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{i}=\mathrm{n}(\mathrm{n}+1) / 2$
Q. 35	Using Principle of Mathematical Induction, prove that for every $\mathrm{n}>=1$, $7+13+19+\ldots+(6 n+1)=n(3 n+4)$
Q. 36	Compare FA, NFA and NFA- Λ with illustration
Q. 37	Define Turing Machine. Describe its capabilities. Also write short notes on Universal Turing Machine.
Q. 38	Explain in Brief: (i) Halting Problem. (ii)Chomsky Normal Form(CNF).
Q. 39	Define Pumping Lemma for Regular Languages. Prove that the language $\mathrm{L}=\{\mathrm{an}$: n is a prime number $\}$ is not regular.
Q. 40	Give transition table for deterministic PDA recognizing the following language. \{ ai bj ck $\mid \mathrm{i}, \mathrm{j}, \mathrm{k} \geq 0$ and $\mathrm{j}=\mathrm{i}$ or $\mathrm{j}=\mathrm{k}$ \}

