COSM Question Bank

BE Sem V CE (A.T.K.T) Examination – 2013.

Convener: Trupti Manik Examiner: Bhavesh Oza

1	Solve using newton Raphson method $x^3 + 2x^2 + 10x - 20 = 0$								
2	Solve using gauss elimination method to solve the equations: $2x + y + z = 10$, $3x + 2y + 3z =$								
	18, $x + 4y + 9z = 16$.								
3	Given that $\frac{dy}{dx} = x + y^2$, $y(0) = 1$. Using Runge-Kutta fourth order method find								
	approximate value of $y(0.2)$, take step-size 0.1								
4	Evaluate $\int_1^5 \log_{10} x dx$, taking 8 subintervals, correct to four decimal places by Trapezoidal								
	method.								
5	A train is moving at speed of 30m/sec. suddenly brakes are applied. The speed of the train								
	per second after t seconds is given by the below table. Apply Simpson's three-eighth rule to								
	determ	ine the	distance	e move	d by	the	train i	n 30	seconds.
		Time(t)	0	5	10	15	20	25	30
		Speed(y)	30	24	19	16	13	11	10
6	If P is the pull required to lift a load W by means of pulley block, find a linear law of form								
		+c connection	ng P and V				re P and V		
	Compu	ite	Р	whe	en	W=		200	kg.
		P:	12	15	21	25			
		W:	50	70	100	120			
7	Fit cub	ic spline and			100	120			
	x:	X0= 1	X1=2		3 X3=	= 4			
	y:	Y0= 1	Y1= 2	2 Y2=	5 Y3=	= 11			
8	Using	Lagrange's	formula,	find the	e values	of f(0)	on the	table give	en below.
		Г		T -	T -	<u> </u>			
		X:	<u>-1</u>	-2	2	4			
	C - 1 4	f(x):	-1	-9	11	69	4411		:C:
9	Solve the following equations by Gauss- seidel iteration correct method upto 3 significant								nificant
	digits. $20x + 2x + x = 30$								
	$\begin{vmatrix} 20x_1 + 2x_2 + x_3 = 30 \\ x_1 - 40x_2 + 3x_3 = -75 \end{vmatrix}$								
	_	$x_2 + 10 x_3 = 3$							
	1	2 3							
10		n different ty							
11	Use Runge Kutta second order method to approximate y when $x = 0.8$ with $\frac{dy}{dx} = \sqrt{x + y}$, x_0								
	$= 0.4 \text{ and } y_0 = 0.41.$								
12	Evaluate the integral using simpson's one-third rule. $\int_0^1 (4x - 3x^2) dx$, taking n=10.								

13	$\frac{dy}{dx}$							
13	Use Eulers's method to find an approximate value of y at x=0.1. in five steps, given that $\frac{dy}{dx}$							
	$= x - y^2$ and $y(0) = 1$							
14	Write and explain program for Regula Falsi Method							
15	Write Program for matrix inversion							
16	Solve using Gauss Seidal method, accurate upto four significant digits.							
	$10x_1 + x_2 + 2x_3 = 44$							
	$2x_1 + 10x_2 + x_3 = 51$							
	$x_1 + 2x_2 + 10 \ x_3 = 61$							
17	Use modified Euler's method to find the solution in the interval [1,1.5] using step size h=0.1							
	for $\frac{dy}{dx}$ = xy with y(1) = 5.							
18	Given a table of values for the function. Fit the second degree polynomial							
	x: 1.0 1.5 2.0 2.5 3.1 4.0							
	y: 1.1 1.3 1.6 2.0 3.4 4.2							
19	Use three iterations of Newton Raphson Method to solve the non-linear equations,							
	$x^2 - y^2 + 7 = 0$, $x - xy + 9 = 0$. Take $(x_0, y_0) = (3.5, 4.5)$ as the initial approximation.							
20	The distance (s) covered by a car in a given time (t) is given below							
	Time(Minutes): 10 12 16 17 22							
	Distance(Km.): 12 15 20 22 32							
24	Find the speed of car at time t =14 minutes.							
21	The following data gives pressure and volume of superheated steam V: 2 4 6 8 10							
	V: 2							
	Find the rate of change of pressure w.r.t. volume when V=8							
22	Following table shows speed in m/s and time in second of a car							
	t: 0 12 24 36 48 60 72 84 96 108 120							
	v: 0 3.60 10.08 18.90 21.60 18.54 10.26 5.40 4.50 5.40 9.00							
0.5	Using simpson's one-third rule find the distance travelled by the car in 120 second							
23	Use three iterations of Jacobi`s method to solve the system of equations							
24	20x + y - 2z - 17 = 0.2x - 3y + 20z - 25 = 0.3x + 20y - z + 18 = 0							
24	Given that $\frac{dy}{dx} = x + y^2$, y(0) = 1. Using Runge-Kutta method find approximate value							
	of $y(0.2)$,take step size 0.1							
25	Use Gauss elimination method to solve the equations:							
	2x + y + z = 10,3x + 2y + 3z = 18, x + 4y + 9z = 16. also write pseudo code for this							
	method.							
26	From the following data calculate two lines of regression							
	X 16 20 17 21 15 X 50 60 58 60 55							
	Y 50 60 58 60 55 (a) Estimate value of Y when X = 25							
	(b) Estimate value of X when Y = 50.							
27	Compute $f'(0.75)$, from the following table							
	x: 0.50 0.75 1.00 1.25 1.50							

		F(x)	0.13	0.42	1.00	1.95	2.35	
28	Find th	\ /						
29	Find the root of the equation $4\sin x + x^2 = 0$ by Secant method. Use Lagrange's formula to find third degree polynomial which fits into the data below							
29	USE La	x:	0	1	3	4		data below
		F(x)	-12	0	12	24		
		T(X)	-12	U	12	24		
	Evalua	te the polyn	omial for x	= 4.				
30	Suppose that you have the task of measuring the lengths of a bridge and a rivet and come up with							
	9999 and 9 cm respectively. If true values are 10,000 and 10 cm respectively. Compute (a) absolute							
	error and (2) percentage relative error for each case.							
31	Find the square root of 10 correct upto three decimal place by using newton raphson method.							
32	Fit the least square parabola to the data							
	I			_			1	
		x: Y:	-1	0	1	2		
		- •	-2	1	2	4		
33	Use 4 th order Runge Kutta method to solve dy/dx = $y^2 + x^2$, y(0)= 1. Evaluate the value of y							e value of y
	when x=0.1							
34					y point "2" a	are gradually	1,16 and -4	0. Prove that
		3, Variance i	•					
35		root of the				ethod upto	four decima	al palces.
36	•	ogram for N	•					
37	Using La	grange's for	mula to find	a polynomia	l of degree tl	hree which f	its into the d	lata below:
	1	1	, 1				1	
		X:	-1	0	1	3		
		f:	2	1	0	-1		
38	Comput	e the skewne	ess based on	the third mo	ment for the	e following d	lata.	
	ĺ	- CI	10.2		1.6		0.10	1
		Class	0-2	2-4	4-6	6-8	8-10	
		frequency	5	18	42	27	8	(0)
39	Find the approximate value of y for x=0.1, x=0.2 by Picard's method given $dy/dx = x + y$, $y(0) = 1$.							
40	Check the result with the exact value. Write program for secant method.							
40	write pr	ogram for se	cant method	J.				