KB-56097

Seat No.____

M. Sc. (Part - II) Examination

April / May - 2003

Statistics: Paper - VI

(Design of Experiment & Multivariate Analysis)

Time: 3 Hours] [Total Marks: 75

Instructions: (1) All questions carry **equal** marks.

- (2) Use of scientific calculator and statistical tables is permitted.
- 1 (a) State and prove Gauss-Markoff theorem.
 - (b) Define: (1) Connectedness (2) Balancedness (3) Orthogonality. Also state necessary and sufficient condition for a Block design to have each of these properties.
 - (c) Check whether the design with incidence matrix $N = a E_{33}$, where a is some positive integer connected, balanced and orthogonal.

OR

- **1** (a) Define B.I.B.D. (v, b, r, k, λ) . For a BIBD show that (1) bk = vr (2) $r(k-1) = \lambda(v-1)$ (3) $b \ge v$.
 - (b) Define SBIBD $(v = b, r = k, \lambda)$ and show that there are λ treatments common between any two blocks.
 - (c) Obtain Intra-block analysis of variance of a BIBD (v, b, r, k, λ) .
- **2** (a) Define a PBIBD with m-associate classes. Show that in a PBIBD with m associate classes :

(1)
$$n_i p_{ik}^i = n_i p_{ik}^j = n_k p_{ij}^k$$

(2)
$$\sum_{i=1}^{m} n_i \lambda_i = r(k-1).$$

KB-56097]

- (b) Define a Youden square design and construct it using SBIBD $(v = b = 5, r = k = 4, \lambda = 3)$.
- (c) Explain the terms:
 - (1) Galois Field
 - (2) Finite Euclidean Geometry.

OR

- ${f 2}$ (a) Define : (1) Main effect and (2) K-factor interaction for 2^m factorial experiment. Discuss the procedure for confounding K independent interactions in 2^m factorial Designs.
 - (b) Show that contrasts representing two different interactions are orthogonal.
 - (c) Construct Mutually Orthogonal Latin Squares (MOLS) L_1 of side 8.
- 3 (a) Describe situations where a Fractional replicate is recommended. Construct a half replicate of 2⁶ factorial experiment taking defining contrast as ABCDEF.
 - (b) Construct a 3^3 confounded factorial design in 9 blocks of 3 plots each by confounding pencils (P(101) and P(112).
 - (c) Construct PBIBD using a CUBE.

OR

3 (a) Define canonical correlation coefficients and canonical variates. In usual notation show that the canonical correlations are solution of the determinant equation :

$$\begin{vmatrix} -\lambda \Sigma_{11} & \Sigma_{12} \\ \Sigma_{12} & -\lambda \Sigma_{22} \end{vmatrix} = 0$$

Further show that multiple correlation coefficient and simple correlation coefficient are special cases of canonical correlations.

KB-56097] 2 [Contd....

- (b) Obtain null distribution of the sample correlation coefficient matrix $R = (r_{ij})$. Show that $E(|R|) = \prod_{i=1}^{n} \left\{1 \frac{i-1}{p-1}\right\}$.
- (c) Show that partial correlation coefficient between x_1 and x_2 given x_3 is same as the simple conditional correlation coefficient between x_1 and x_2 .
- 4 (a) Define singular and non-singular multivariate normal distribution. Obtain characteristic function of singular multivariate normal distribution.
 - (b) Let $x_r(r=1, 2,...,k)$ be independently distributed as

 $N_p(\mathfrak{Q}_r,\ \Sigma_r).$ Show that for fixed matrices $A_r:\ m\times p;\ \sum_{r=1}^k A_r\ \underline{x}_r$

has m-variate normal distribution with mean vector $\sum_{r=1}^{k} A_r \underbrace{\theta}_r$

and covariance matrix $\sum_{r=1}^{k} A_r \Sigma_r A_r'$. Hence, obtain the

(c) If x_1 , x_2 , x_3 are iid as $Np(\mu, \Sigma)$ random variables and $f \qquad y_1 = x_1 + x_2, \quad y_2 = x_2 - x_3;$ obtain the conditional distribution of y_1 given y_2 .

OR

distribution of sample mean vector \bar{x} .

4 (a) Define Wishart matrix V. Obtain the distribution of V when $n \ge p$, $\mu = 0$ and $\Sigma = I$.

KB-56097]

- (b) State and prove additivity property of Wishart distribution.
- (c) Obtain (i) ED and (ii) E(ADA') where $A: p \times p$ is any nonsingular matrix and $D \sim W_p(D|n|\Sigma)$.
- **5** (a) Let $\underline{x} \sim N_p(\underline{\mu}, \Sigma)$. Define James Stien's estimator of mean

vector μ . Show that $d_{\alpha}(x) = \left(1 - \frac{\alpha}{x'x}\right)x$ is an admissible

estimator for $p \ge 3$ with respect to squared error loss function $l(\mu, \underline{d}) = (\underline{d} - \underline{\mu})'(\underline{d} - \underline{\mu})$

(b) If $\sum = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$ where $\rho > 0$, find the first principal component

associated with Σ and find the percentage of total variance explained by it.

OR

- 5 (a) Write a short note on Fisher's linear discriminant.
 - (b) Discuss the problem of classifying into two unknown multivariate normal population with known common covariance matrix Σ . Obtain explicit expression for error of misclassifications.
 - (b) Define Dirichlet distribution and Dirichlet integral. Write its applications. If $\underline{x}_1, \underline{x}_2, \dots, \underline{x}_n$ be an r.s. of size n from the population with pdf $g(\underline{x}'A\underline{x}), |A| > 0$; obtain the pdf of $y = \underline{x}'A\underline{x}$. If $\underline{x} \sim N_pA(\underline{0}, \Sigma)$, what is the distribution of $y = \underline{x}'\Sigma^{-1}\underline{x}$.

4 [150]