M. Sc. (Part - II) Examination

April/May - 2003

Statistics: Paper - V

(Statistical Inference)

Time: 3 Hours [Total Marks: 75

Instructions: (1) All the questions carry **equal** marks.

- (2) Use of scientific calculator and statistical tables is permitted.
- 1 (a) Describe the main components of a statistical decision problem. Show that the problem of estimation and testing of hypotheses are statistical decision problems.
 - (b) When do you say a decision rule d_1 is better than d_2 ? Define :
 - (1) As good as
 - (2) Admissible decision rule
 - (3) Complete class of decision rules
 - (4) Minimal complete class of decision rules.
 - (c) Show that if the class of admissible rules is complete, then it is minimal complete.

OR

- 1 (a) Define:
 - (1) Loss function and risk function
 - (2) Non randomised and rundomised decision rules
 - (3) Prior and posterior distributions
 - (4) Bayes risk.
 - (b) Describe Bayes principle and minimax principle for ordering the available decision rules.
 - (c) Let $\Omega = \left\{\theta_1, \theta_2, \theta_3\right\}$; $A = \left\{a_1, a_2\right\}$ and the loss function defined on $\Omega \times A$ is

Obtain Bayes rule with respect to prior $\pi(\theta)$ $\pi(\theta_1) = 0.5$, $\pi(\theta_2) = 0.3$, $\pi(\theta_3) = 0.2$.

- **2** (a) Explain the difference between Games problem and Decision problem, it any.
 - (b) Define Bayes rule, limit of Bayes rules and generalized Bayes rule.
 - Using quadratic loss function, obtain Bayes estimator for θ when : $f(x,\theta) = \frac{e^{-\theta}\theta^x}{x!}$, $x = 0,1,2....,\infty$, $\theta > 0$ and the prior distribution is given by $g(\theta) = \frac{1}{\alpha} e^{-\theta/\beta} \theta^{\alpha-1}, \ \theta > 0, \ \alpha, \beta > 0.$

OR

- 2 (a) Define the risk set of a statistical decision problem. If the parameter space is discrete and finite, prove that risk set S is a convex subset of E_k , where k is the number of elements in the parametric space.
 - (b) If S is bounded and closed from below and $\pi = (\pi_1, \pi_2,\pi_k)$ is a prior distribution over Ω with $\pi_j > 0$ for all j, then prove that Bayes rule with respect to prior π exists.
 - (c) If the risk set of a decision rule δ_0 is an element of lower boundary set $\lambda(s)$ then show that δ_0 is admissible.

- 3 (a) State and prove the necessary part of the Neyman Pearson fundamental lemma for randomized test. Why we have to generalize the NP lemma? State the properties of GNP lemma.
 - (b) "If both H_0 and H_1 specify the distributions from the same family $\left\{F_{\theta}, \theta \in \Omega\right\}$ and if a sufficient statistic t for θ exists then the BCR is a function of the sufficient statistic. However, the BCR will not be always of the form $t \geq c_{\alpha}$ or $t \leq c_{\alpha}$ " Examplify the statement.

OR

- 3 (a) Define the terms : UMPU test, α -similar test, and test with Neyman structure.
 - (b) Testing the hypothesis $H: \theta = \theta_0$ versus $K: \theta \neq \theta_0$ for exponential family of distribution with pdf (or pmf) $f(x,\theta) = c(\theta) \exp \left\{ \varphi(\theta) T(x) \right\} h(x), \text{ show that for UMPU}$ test $\varphi(x)$

$$E_{\theta_0} \left\{ \phi(x) T(x) \right\} = \alpha E_{\theta_0} \left\{ T(x) \right\}.$$

- (c) Let $X \sim f(x,\theta) = \frac{1}{\theta} e^{-x/\theta}$, $x \ge 0, \theta > 0$. Obtain UMPU test of size α for testing $H := \theta_0$ versus $K : \theta \ne \theta_0$ based on a single observation on X. Also give explicit expression for power function of the test.
- 4 (a) Prove that for testing the hypothesis $H: \theta \leq \theta_1$ or $\theta \geq \theta_2$, $\theta_1 < \theta_2$ against the alternative $K: \theta_1 < \theta < \theta_2$ in a single parameter exponential family there exists a UMP test given by:

$$\phi(x) = \begin{cases} 1 & \text{if} \quad c_1 < T(x) < c_2 \\ r_i & \text{if} \quad T(x) = c_i, \ i = 1, 2 \\ 0 & \text{if} \quad T(x) < c_1 \quad \text{or} \quad T(x) > c_2 \end{cases}$$

Where the c's and r's are determined by

$$E_{\theta_1} \left\{ \phi(x) = \alpha = E_{\theta_2} \left\{ \phi(x) \right\}.$$

(b) Let $X \sim P_0(\lambda)$ and $Y \sim P_0(\mu)$, $\lambda > 0$, $\mu > 0$, X and Y are independent. To test $H: \lambda \geq \mu$ versus $K: \lambda < \mu$ derive UMP test of size α . Also obtain the power function of the test.

OR

- 4 (a) Define uniformly most accurate and uniformly most accurate unbiased confidence intervals.
 - (b) Let X_1, X_2, \ldots, X_n be n independent observations from $N(0, \sigma^2)$ distribution to test the hypothesis $H : \sigma = 1$ against $K : \sigma \neq 1$. Obtain UMPU ten of level α . Hence deduce UMAU confidence interval for σ .
 - (c) Write note on likelihood ratio test and its properties.
- 5 (a) Let N denote the number of observations required by SPRT with bounds B < 1 < A. The show that there exists constants δ and C with c > 0 and $0 < \delta < 1$ such that $P(N \ge n) \le c\delta^n$ Hence show that SPRT terminates eventually with probability one.
 - (b) Suppose that X be a Bernoulli random variable corresponding to the event E such that p be the probability of success and 1-p be the probability of failure of an event E. Construct an SPRT with strength (α,β) and obtain an expression for the ASN for testing $H: p=p_0$ against $K: p=1-p_0$.
 - (c) What is Mann Whitney U-test? In what respect does it differ from Wald-wolfowitz runs test? Explain how one finds the null probability distribution of the Mann-Whitney U-test statistic.

OR

- **5** (a) Describe Wald–Wolfowitz runs test in case of small and large samples.
 - (b) Explain chi-square test of goodness of fit. Derive its asymptotic distribution.
 - (c) State the fundamental identity of sequential probability ratio test. Obtain approximate expressions for (i) O.C. function and (ii) ASN function using the identity.