H-55026

Seat No.

M. Sc. (Part - I) Examination

April/May - 2003

Statistics: Paper - II

(Probability Theory & Distributions)

Time: 3 Hours] [Total Marks: 75

Instructions: (1) All questions carry **equal** marks.

- (2) Use of calculator and statistical tables is permissible.
- **1** (a) Define a probability space and show that probability measure P defined on the space is countably subadditive.
 - (b) Define a distribution function of random variable and show that set of discontinuity points of a distribution function is atmost countable.
 - (c) State the decomposition theorem for the distribution functions.

A distribution function is given by

$$F(x) = 0 \text{ if } x < 0$$

$$\frac{x^2}{3} if 0 \le x < 1$$

$$\frac{1}{3} + \left(\frac{x-1}{2}\right)^2 if \ 1 \le x < 2$$

1 if
$$x \ge 2$$
.

Obtain the decomposition of F into its discrete and continuous parts.

OR

- **1** (a) State and prove Markov's inequality. Derive Chebyshev's inequality from Markov's inequality.
 - (b) If $E(X_1) = E(X_2) = 0$, $V(X_1) = V(X_2) = 1$ and $COV(X_1, X_2) = \rho$ then show that $E[\max(X_1^2, X_2^2)] \le 1 + \sqrt{1 \rho^2}$. Hence derive the Berge inequality for correlated random variables.
 - (c) Show that convergence almost surely implies convergence in probability.
- **2** (a) Define characteristic function of random variable. State and prove inversion theorem on characteristic function.

H-55026]

- (b) State Borel Cantelli Lemma. If $\{A_n\}$ is a sequence of events such that $P(A_n) = \frac{1}{2}P(A_{n-1})$ and A_1 is a certain event then find P ($\lim Sup A_n$).
- (c) State and prove Helly-Bray theorem.

OR

- **2** (a) Let $\{X_n\}$ be a sequence of i.i.d. random variables with $E(X_n) = \mu < \infty$. Then show that $\overline{X}_n \xrightarrow{P} \mu$.
 - (b) State and prove Liapounov's form of central limit theorem.
 - (c) If $\{X_n\}$ is a sequence of independent random variables with the distributions : $P[X_n = \pm n^{\lambda}] = \frac{1}{2}$ where λ is constant. Examine whether the central limit theorem holds for any λ .
- **3** (a) Define the terms:
 - (i) Markov Chain
 - (ii) Absorbing State
 - (iii) Stationary distribution.
 - (b) If $P(X_0 = i) = \frac{1}{3}$ for i=1,2,3 and

$$P = \begin{bmatrix} 0 & \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & 0 & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & 0 \end{bmatrix}, \text{ then compute } \mathbf{P}(\mathbf{X_2} = \mathbf{i}) \text{ for } i = 1, 2, 3.$$

(c) Stating the postulates of a pure birth process, obtain the difference-differential equations governing,

$$P_n(t) = P(x(t) = n/X(o) = i)$$

OR

- **3** (a) Define a contagious distribution and obtain its probability generating function. Hence or otherwise derive the probability function of Poisson-Pascal distribution.
 - (b) Let $X_1, X_2,, X_N$ be independent random variables with common distribution F and let N be a random variable independent of X_j . Define $Y = \sum_{i=1}^n X_i$ and let $\phi_y(t)$ be the characteristics function (ch.f) of Y. $\phi_1(t)$ and $\phi_2(t)$ are the

H-55026] 2 [Contd....

- ch.fs of random variables N and X respectively then show that $\phi_{Y}(t) = \phi_{1}[-i\log(\phi_{2}(t))]$.
- (c) Explain the method to obtain ML estimates of the parameters of Neyman type-A distribution.
- **4** (a) Define Poisson-Binomial distribution and derive its rth factorial cumulant. Hence obtain moment estimators of the parameters of the distribution.
 - (b) Suppose the number of automobile accidents in a certain area in a week is a random variable with mean μ_1 and variance σ_1^2 . The number of persons in sured in each accident is independent from accident to accident and has mean μ_2 and variance σ_2^2 . Let W denote the number of persons injured in automobile accidents in the area in a week. Find E(W) and V(W).
 - (c) Define multinomial distribution $M_k(n, p_1, p_2,, p_k)$ for the distribution show that

$$\rho_{12.34...m} = -\left\{ \frac{p_1 p_2}{(1 - p_1 - p_3 - \dots - p_m)(1 - p_2 - p_3 - \dots p_m)} \right\}^{\frac{1}{2}} \quad \text{where} \quad m < k.$$

OR

- 4 (a) Define multivariate normal distribution. Let $\underline{x} \sim N_n(\underline{\mu}, \Sigma)$ then show that $\underline{y} = L\underline{x} \sim N_p(L\underline{\mu}, L\Sigma L')$ where L is a known matrix of order $n \times p$. Hence show that $\underline{y}_1 = L_1\underline{x}$ and $\underline{y}_2 = L_2\underline{x}$ are independently distributed as normal iff $L_1\Sigma L_2^1 = 0$.
 - (b) Let $x \sim N_p(\underline{\mu}, \underline{\Sigma})$. Derive the distribution of $\underline{X}' A \underline{X}$, where A is positive definite real symmetric matrix. Hence show that $E(\underline{X}' A \underline{X}) = tr(A \Sigma) + \mu' A \mu$.
 - (c) Let $X_n = \max (X_1, X_2, ..., X_n)$. Show that $E(X_{(n)}) = E(X_{(n-1)}) + \int_0^\infty F^{n-1}(x) [1 F(x)] dx, n = 2, 3, \text{ Also find}$ $E(X_{(n)}) \text{ if } X_i \text{ is have the common distribution function}$ $F(x) = 1 e^{-\beta x}, x \ge 0, \beta > 0.$

H-55026] 3 [Contd....

- 5 (a) Let $X_1, X_2, ..., X_n$ be iid N(0,1) random variables. Define $Y = \sum_{i=x}^{n} (X_i + \lambda)^2$. Obtain the sampling distribution of Y. Also find the I^{th} cumulant of Y. What will be the distribution of Y when $X_i = 0$?
 - (b) Define noncentral F and doubly noncentral F variates. Derive the distribution of noncentral F variate and find its mean.

OR

- 5 (a) If X follows $N(\mu,1)$ distribution and Y is an independent chi-square variate with n degrees of freedom then obtain the distribution of $\frac{\sqrt{n}X}{\sqrt{Y}}$. Give some applications of the distribution.
 - (b) Prove re-productive property of noncentral chi-square distribution. If X and Y are two independent random variables such that X is chi-square variate with r df and Y is noncentral chi-square with 1 df and χ non-centrality parameter then obtain the distribution of X+Y. Find its mean and variance.