Seat No. _____

M. A. / M. Sc. (Part - I) Examination

April/May - 2003

Statistics, Matrix Algebra &

Measure Theory: Paper - I

Time: 3 Hours] [Total Marks: 75

Instructions: (1) All questions carry **equal** marks.

- (2) Use of calculator and statistical tables is permissible.
- **1** (a) Let A, B, C, D be $n \times n$ matrices, where $|D| \neq 0$ and D and C commutes. Show that :

$$(1) \quad \begin{vmatrix} A & 0 \\ C & D \end{vmatrix} = |A| \cdot |D|$$

(2)
$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |AD - BC|.$$

(b) Show that tr AB = tr BA, for any two matrices A and B as long as the product exist. Also show that $tr (AB)^2 = tr (BA)^2$.

OR

- **1** (a) Let A be $m \times n$ and B be $n \times p$ matrices. If $\rho(A) = n$, show that $\rho(AB) = \rho(B)$. Also show that, if $\rho(B) = n$, $\rho(AB) = \rho(A)$.
 - (b) **f** $A: q \times m$, $B: m \times n$ and $C: n \times p$, show that $\rho(AB) + \rho(BC) \rho(B) \le \rho(ABC) \le \min \left\{ \rho(AB), \rho(BC) \right\}.$
- **2** (a) Let *A* be nonsingular matrix of order *n* and let \underline{u} and \underline{v} be two *n*-component columon vectors such that $\left(1 + \underline{v} A^{-1} \underline{u}\right)$ is

non-zero. Then show that
$$\left(A + \underbrace{u}_{v} \underbrace{v}'\right)^{-1} = A^{-1} - \frac{A^{-1} \underbrace{u}_{v} \underbrace{v}' A^{-1}}{1 + \underbrace{v}' A^{-1} \underbrace{u}_{v}}.$$

(b) If $A: n \times n$ and $B: m \times m$ are non-singular matrices and $C: m \times n$, show that

$$\begin{pmatrix} A & 0 \\ C & B \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & 0 \\ -B^{-1} \subset A^{-1} & B^{-1} \end{pmatrix}$$

(c) Let A^- be a g-inverse of A and B^- be a g-inverse of B. Prove that B^-A^- is a g-inverse of AB if and only if A^-ABB^- is idempotent.

OR

- **2** (a) Define the Moore–Penrose g–inverse of a matrix. If A^{\dagger} denotes the Moore–Penrose g–inverse of A, show that :
 - $(1) \quad (A')^{\dagger} = (A^{\dagger})'$
 - (2) $(A' \ A)^{\dagger} = A^{+}(A')^{+}$
 - (b) If A is a real symmetric matrix of order n, show that there exists and orthogonal matrix C such that $C'AC = diag\{\lambda_1, \lambda_2,....,\lambda_n\}$ where $\lambda_1, \lambda_2,....,\lambda_n$ are characteristics roots of A.
 - (c) Show that the number of non-zero characteristics roots of a matrix cannot exceed its rank.
- 3 (a) Let $A_1, A_2,..., A_k$ be square matrices of order n and $A = \sum_{i=1}^k A_i$. If A is an idempotent matrix and $\rho(A) = \sum_{i=1}^k \rho(A_i)$, show that each A_i (i = 1, 2,..., k) is idempotent and $A_i A_j = 0$

for $i, j \in \{1, 2, ..., k\}; i \neq j$.

(b) If $\lambda_1 > \lambda_2 > \dots > \lambda_n$ are characteristic roots of a real symmetric matrix A of order $n \times n$ show that

$$\lambda_n \leq \frac{\underline{x}' A \underline{x}}{\underline{x}' \underline{x}} \leq \lambda_1 \quad \text{for} \quad \underline{x} \neq \underline{0}.$$

(c) If $\lambda_1, \lambda_2, \dots, \lambda_n$ are the characteristic roots of a matrix A

of order
$$n$$
, show that (1) $tr A = \sum_{i=1}^{n} \lambda_i$ (2) $|A| = \prod_{i=1}^{n} \lambda_i$

OR

- **3** (a) Define the following terms:
 - (1) Hahm and Jordan decomposition
 - (2) Lebesgue decomposition
 - (3) Equivalence of two measures
 - (4) Singularity of two measures
 - (5) Outer measurable set.
 - (b) Show that every set of outer measure zero is μ^* -measurable set.
 - (c) Give an example of a set function which is measure. Define outer measure and construct on outer measure of measure which you define. Why we define outer measure?
- **4** (a) Define the terms :
 - (1) σ -ring
 - (2) σ -field
 - (3) monotone class
 - (4) Hereditary class.
 - (b) Give an example of a class which is a hereditary class but not a σ -field.
 - (c) Show that every union of arbitrary sets in a σ -field can be represented as a union of mutually disjoint sets in the same σ -field.
 - (d) If μ is a measure on field $\mathfrak Z$ and $\{A_n\}$ is a sequence of sets in $\mathfrak Z$ such that $\lim A_n \in \mathfrak Z$, $\mu(A_n) < \infty$ for at least one n then show that $\mu(\lim A_n) = \lim \mu(A_n)$.

OR

- **4** (a) State the extension theorem on measure and use it to define Lebesgue–Stieltjes measure.
 - (b) If μ_F is the Lebesgue–Stieltjes measure with respect to a Stieltjes measurable function $F:R\to R$ show, in usual notations, that :
 - (1) $\mu_F(\{a\}) = F(a+0) F(a-0)$ for $a \in R$
 - (2) $\mu_F((a, b)) = F(b-0) F(a)$ for $-\infty < a \le b < \infty$.

If F is a distribution function given by

$$F(x) = \begin{cases} 0 & \text{if} & x < 0 \\ \frac{1}{4} & \text{if} & 0 \le x < 1 \\ 1 & \text{if} & x \ge 1 \end{cases}$$

Find $\mu_F = (0, 1)$ and $\mu_F [0, 1]$.

- (c) State and prove "Continuity theorem on measure".
- 5 (a) Define the integral of a simple measurable function over a measure space (x, μ) . If f is a simple measurable function such that $f \ge 0$ almost everywhere then show that $\int f d\mu \ge 0$.
 - (b) IF λ is the Lebesgue measure in R find $\int f d\lambda$ where f is defined by

$$f = \begin{cases} -2 & \text{for} & -1 < x < 0 \\ 1 & \text{for} & x = 0 \\ 2 & \text{for} & 0 < x \le 1 \\ 3 & \text{otherwise} \end{cases}$$

What is the value of $\int_A f \, d\lambda$ where A = (3, 10) ?

(c) Define measurable function. Show that random variable is an example of measurable function.

OR

- **5** (a) State and prove "Monotone Convergence Theorem".
 - (b) Let $\{f_n\}$ be a sequence of non-negative measurable functions in a measure space $(*, , \mu)$, show that :

(1)
$$\int \left(\sum_{n=1}^{\infty} f_n\right) d\mu = \sum_{n=1}^{\infty} \int f_n d\mu$$

- (2) $\int (\liminf f_n) d\mu \le \liminf \int f_n d\mu.$
- (c) Show that a simple function $f(x) = \sum_{i=1}^{n} C_i \chi_{E_i}(x)$ is integrable iff $c_i = 0$ for each integer i such that $\mu(E_i) = \infty$

55011]