AA-3354

Seat	No.	

M. Phil. Examination

April / May - 2003

Statistics (Compulsory)

(Research Methodology)

Time: 3 Hours] [Total Marks: 100

Instructions: (1) Each question carries **20** marks.

- (2) Use of statistical tables and scientific calculator is permitted.
- 1 (a) Derive OLS estimators and their dispersion matrix for general linear model with data matrix having full rank and when the parameters are subjected to given linear restrictions.
 - (b) What is the problem of heteroscadasticity? Enumerate different tests of heteroscadasticity. How would you apply 2 SLS method to tackle the heteroscadastic situation?
 - (c) Explain how dummy variables are useful in econometric analysis.

OR

- **1** (a) Discuss in detail Silvey's approach of tackling the problem of multicolinearity in linear models.
 - (b) Obtain Generalised Difference Equation for linear models and discuss how it will be useful to tackle the problem of auto correlation when serial correlation coefficient is known or unknown.
 - (c) Show how Koyck's transformation can convert dL Models into AR Models.
- **2** (a) State and prove Gauss Marfoff Theorem for linear models having less than full rank.

AA-3354] 1 [Contd....

- (b) Discuss important applications of linear models in different fields.
- (c) Show that the general solution of the non-homogenous consistent linear equations $A\underline{x} = \underline{b}$ is given by $x = \overline{A}b + (T H)Z$.

OR

- 2 (a) For the system of non homogenous linear equations $\underline{Y} = X\underline{\beta} + \underline{\in}$, having general solution $\underline{\hat{\beta}} = \overline{S} \ X'\underline{Y} + (I H)\underline{Z}$ where \overline{S} is any g-inverse of X'X, $H = \overline{S} S$, show that (i) if \overline{S} is a g-inverse of X'X = S then $(\overline{S})'$ is also a g-inverse. (ii) X = XH (iii) if \overline{S}_a and \overline{S}_b are two g-inverses of X, then $X \ \overline{S}_a X' = X \overline{S}_b X'$. (iv) a solution of the normal equation $X'\underline{Y} = (X'X)\underline{\beta}$ is unique if and only if $\rho(X) = \rho(X'X) = K$.
 - (b) Write explanatory note on : 'Piecewise Linear Regression Model'.
- **3** (a) Discuss briefly about (i) Monte Carlo method and (ii) Mid square method for simulation.
 - (b) How would you select a random sample of size n from the following populations using simulation method ?

(1)
$$f(x, \theta) = \theta e^{-\theta x}, x \in \mathbb{R}^+, \theta > 0$$

(2)
$$f(x, \theta) = \frac{e^{-\theta} \theta^x}{x!}, x = 0, 1, 2, \theta > 0.$$

(c) A certain company wants to market a new product. The fixed cost for the project is Rs. 4,000. There are three uncertain factors: Selling price, variable cost and sales volume for the new product to be launched. The product has a life of one year. Following data are for consideration by the management:

AA-3354] 2

Factor - 1		Factor - 2		Factor - 3	
Selling	Probability	Variable	Probability	Sales	Probability
Price		cost		volume	
(in Rs.)		(in Rs.)		(in units)	
3	0.20	1	0.40	2000	0.40
4	0.50	2	0.50	3000	0.40
5	0.30	3	0.10	5000	0.20

Run simulation for 10 days and estimate average profit.

OR

- **3** (a) Define CAN estimator. Show that sample distribution function is a CAN estimator for population distribution function.
 - (b) If $T \sim AN\left(\theta, \frac{V(\theta)}{n}\right)$ where $V(\theta) > 0$ and if Ψ is such that $\frac{d\Psi}{d\theta} \neq 0$ and is continuous then prove that

$$\Psi(T) \sim AN \left[\Psi(\theta), \ \frac{V(\theta)}{n} \left(\frac{d\Psi}{d\theta} \right)^2 \right].$$

- (c) Let $(x_1, x_2,....,x_n)$ is a random sample taken from a Poisson distribution with mean θ , $\theta > 0$. Show that $\overline{x} e^{-\overline{x}}$ is CAN estimator for $\theta e^{-\theta}$ and derive its asymptotic variance.
- 4 (a) Consider multinomial distribution in four cells with $P_1(\theta) = \frac{2+\theta}{4}$, $P_2(\theta) = P_3(\theta) = \frac{1-\theta}{4}$, $P_4(\theta) = \frac{\theta}{4}$. Here $0 < \theta < 1$ is the linkage factor. Consider a sample of size n with data given by (n_1, n_2, n_3, n_4) as cell frequencies. Then show that $\hat{\theta} \sim AN\left(\theta, \frac{2\theta(1-\theta)(2+\theta)}{n(1+2\theta)}\right)$; where $\hat{\theta}$ is the mle of θ .
 - (b) Explain the method of constructing asymptotic confidence interval (ACI). For Cauchy distribution with parameter θ show that ACI for θ is $\left(\hat{\theta} \pm \sqrt{\frac{2}{n}} \zeta_{1-\frac{\alpha}{2}}\right)$, where n= sample size and $\hat{\theta}$ is the mle of θ .

AA-3354] 3 [Contd....

(c) Explain the method to construct studentized version of the asymptotic confidence interval with suitable example.

OR

4 (a) Consider the Poreto distribution with pdf

 $f(x; \theta) = \frac{\theta}{x^{\theta+1}}, x \ge 1, \theta > 0$, and zero otherwise. Show

that it belongs to one parameter exponential family and obtain the MLE $\,\hat{\theta}$ and its asymptotic distribution.

(b) If $\{X_1, X_2, ..., X_n\}$ are iid random variables with $E(X_i) = \mu(\theta), V(X_i) = \sigma^2(\theta)$ such that $\frac{d\mu}{d\theta} \neq 0$ and is continuous then show that

$$\mu^{-1}(\overline{X}) \sim AN\left(\theta, \frac{\sigma^2(\theta)}{n} / \left(\frac{d\mu}{d\theta}\right)^2\right)$$

where $\bar{x} = \text{sample mean}$.

- (c) Let $\{X_1, X_2,, X_n\}$ are n iid random variables from $N(\theta_1, \theta_2)$ then obtain ACI for $\theta_1 + \zeta_p \sqrt{\theta_2}$, where ζ_p is the 100 p % percentile of standard normal distribution.
- **5** (a) Discuss in detail the main steps involved in a sample survey.
 - (b) Discuss in detail family living surveys for working class.
 - (c) Explain the terms:
 - (1) Sampling and non-sampling errors.
 - (2) Sample check.
 - (3) Post census.

OR

- **5** (a) Discuss in detail National Sample Survey for rural sector.
 - (b) Define non-response errors. Suggest an estimator for population total when n_1 units for n units respond and if the units are selected with SRSWOR. Also find its variance.