MG-556

Seat No.____

3

First Year B. B. A. Examination

April / May - 2003

Business Mathematics

Time: Hours] [Total Marks:

Instructions: (i) Use of simple **calculator** is **only** allowed.

(ii) Graph papers will be supplied on request.

1 (a) (i) Define the following terms with example : 3 Cartesian product of two sets, combination.

(ii) Prove that there exist one and only one real number b such that $a \cdot b = 1 = b \cdot a$.

(b) If A, B and C are any three sets then using definition of subset prove that,

 $(A-B)\cup (B-A)=(A\cup B)-(A\cap B).$

(c) A committee of six is to be formed from 6 students and 3 professors. In how many ways this can be done so that committee contains at least 3 students?

(d) The daily cost of production for x number of units is C(x) = 2.5x + 1500

(i) If selling price is Rs. 4 per unit, then obtain break even point.

(ii) If selling price increased by Re. 1, then obtain new break even point.

OR

1 (a) (i) Define the following terms with example : Symmetric difference of two sets, proper subset.

(ii) Prove that for every real number a, there exist one and only one real number '1' such that $a \cdot 1 = 1 \cdot a$, $\forall a \in R$.

(b) A class of 100 students appeared for F. Y. B.B.A. examination. Out of 100 students, 40 passed in Mathematics, 36 passed in Management, 60 passed in

MG-556] 1 [Contd...

Accountancy. 8 students passed in Mathematics and Management, 17 passed in Management and Accountancy, 16 passed in Mathematics and Accountancy, 5 passed in all three subjects. *Find*:

- (i) How many students passed in exactly one subject ?
- (ii) How many students passed in atleast two subjects ?
- (c) Prove that, ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$.
- (d) The cost of producing x units is given by $C(x) = x^2 17x + 72.$
 - (i) It selling price is Rs. 5 per unit then, what number of units should be produced to ensure no loss?
 - (ii) If 40 units can be sold daily, then what price should be charged to guarantee no loss?
- **2** (a) Define :

4

4

- (i) Skew Symmetric Matrix
- (ii) Orthogonal Matrix
- (iii) Upper triangular Matrix
- (iv) Non-singular Matrix.

(b) If
$$A = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 3 & -2 \\ 0 & -1 & 2 \end{bmatrix}_{3\times 3}$$
 then find, $A^2 - 6A + 2I$, 6

where I is an identity Matrix of order 3. Also, find $Adj\ A$.

(c) Find the equation of a straight line passing through the point (5, 7) and the sum of both intercepts on axes is 24.

OR

2 (a) If
$$A = \begin{bmatrix} 6 & -5 \\ -3 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 17 \\ 1 \end{bmatrix}$ then find a

matrix X such that AX = B.

MG-556] 2 [Contd...

(b) Solve the following equations using Cramer's rule : $\mathbf{6}$

$$x + y + z = 3$$

$$2x - y + z = 2$$

$$x - 2y + 3z = 2$$

- (c) Find the equation of a straight line passing through the points (6, 5) and (10, 5). Also find an equation of a line parallel to this st. line and passing through the point (-2, -5).
- **3** (a) Evaluate : (any **two**)

(i)
$$\lim_{x \to 0} \frac{\sqrt{1+x} - 1}{x}$$

(ii)
$$\lim_{n\to\infty} \frac{6n^2 + 8n + 9}{(2n^2 - 5n + 6)}$$

(iii)
$$\lim_{n\to\infty} \left(1-\frac{6}{n}\right)^{\frac{3}{5}n}$$

(iv)
$$\lim_{x\to 4} \frac{x^3 - 64}{x - 4}$$
.

(b) Differentiate the following functions w.r.t. x: 4 (any **two**)

(i)
$$y = \left(\frac{x+8}{3-x}\right)^{2/5}$$

(ii)
$$y = \log(\log x)$$

(iii)
$$y = 3^x x^3 3^3$$
.

(c) The total cost function of a commodity is given by $C(x) = 25x + 10{,}000$, where demand function of a firm is x = 2500 - 5P. Find the value of x (No. of units) at which the firm can expect the maximum profit.

OR

3 (a) Evaluate : (any two)

(i)
$$\lim_{x\to 0} \frac{6^{2x}-2^{6x}}{5x}$$

(ii)
$$\lim_{m\to 0} \left(1 - \frac{5m}{3}\right)^{\frac{30}{m}}$$

(iii)
$$\lim_{x \to 1} \frac{x^3 - 2x^2 + 2x - 1}{x - 1}$$

(iv)
$$\lim_{x\to 2} \frac{\sqrt{x+4}-\sqrt{6}}{x-2}$$
.

(b) Differentiate the following functions w.r.t. x: 4 (any **two**)

(i)
$$y = 9^{x^3}$$

(ii)
$$y = \log\left(\frac{x^2 - 6x + 10}{2x^2 + 5x - 6}\right)$$

(iii)
$$y = (2x+3)(6x-1)(5-2x)$$
.

(c) Find the maximum and minimum values of the function $f(x) = \frac{2x^3}{3} + \frac{x^2}{2} - 6x + 8$.

3

4

4 (a) Define the following terms:

2

- (i) Integration
- (ii) Definite integration.

4

(b) Evaluate: (any two)

- (i) $\int \frac{\left(x^2 + 3x^2 2x + \sqrt[4]{x} + 9\right)}{\sqrt{x}} dx$
- (ii) $\int x^2 (x^3 9)^9 dx$
- (iii) $\int \frac{1}{x \log x} dx$
- (iv) $\int (x^2 + 1) \log x \, dx.$
- Evaluate : (any two) 4
 - (i) $\int_{6}^{9} \frac{\sqrt{15-x}}{\sqrt{x} + \sqrt{15-x}} dx$
 - (ii) $\int \frac{x(x+1)}{(x+2)(2x+1)} dx$
 - (iii) $\int x^2 2^x dx$
 - (iv) $\int \frac{3x}{\sqrt{x^2 + 9}} \, dx.$

OR

4 (a) Evaluate : (any two)

3

(i) $\int_{0}^{3} (3-x)^{10} \cdot x \cdot dx$

MG-556]

5

[Contd...

(ii)
$$\int \frac{2x^5 + 1}{x^6 + 3x} \ dx$$

(iii)
$$\int \frac{\left(x^4 + 2x^2 + 6x + 10\right)}{\sqrt{x}} dx$$
.

(iv)
$$\int (x^3 + 3x^2 + 6x)^{\frac{1}{3}} (x^2 + 2x + 2) dx$$
.

(b) Evaluate: (any two)

(i)
$$\int \log x \ dx$$

(ii)
$$\int \frac{x(x+2)}{(x+1)(x-3)} dx$$

(iii)
$$\int \left(\frac{e^{2x} - 1}{e^{2x} + 1}\right) dx$$

(iv)
$$\int_{-1}^{1} (x^4 + x^2 + 9) dx$$
.

- (c) The Marginal Revenue of a commodity is given by $MR = 3x^2 6x + 25$. If the revenue of producing and selling 2 units is Rs. 50, then obtain average revenue for producing 4 units.
- 5 (a) A producer produces two products *A* and *B*. It requires 20 minutes for the process of each unit of *A* and 15 minutes for that of *B*. The maximum available time for process is 150 minutes. A producer can earn a profit of Rs. 25 by selling one unit of A and Rs. 35 by selling one unit of *B*. Each unit of *A* requires 5 kg of raw material while that of *B* requires 4 kg of raw material. The total supply of Raw material is 850 kg only.

Formulate the above problem as a linear programming problem.

4

3

4

(b) Solve the following problem by Graphical Method. Maximize
$$Z = 68x + 92y$$

7

Such that

$$9x + 12y \le 108$$

$$20x + 15y \ge 180$$

$$25x + 10y \ge 150$$

Where $x, y \ge 0$.

OR

- 5 (a) Define the following terms : 2
 Slack variable and Surplus variable.
 - (b) Using Simplex Method, solve the following linear programming problem : Maximize $Z = 5x_1 + 7x_2$

$$4x_1 + 5x_2 \le 200$$

$$3x_1 + 5x_2 \le 180$$

$$2x_1 + 3x_2 \le 165$$

Where $x_1, x_2 \ge 0$.

6 (a) For the following transportation problem, obtain initial basic feasible solution only by using NWCM, LCM and Vogel's approximation method :

		Warehouse				
	W_1	W_2	W_3	W_4	Capacity	
$oxed{F_{A}} F_{1}$	8	11	4	16	28	
$\begin{bmatrix} C \\ T \end{bmatrix} F_2$	18	8	13	3	10	
$\begin{bmatrix} O & F_3 \\ R & F_3 \end{bmatrix}$	2	15	9	11	38	
Requiremen	t 12	26	16	22		

(b) Give the mathematical form of Assignment Problem and show that every assignment problem is a linear programming problem.

4

7

OR

6 (a) Solve the following transportation problem obtain optimal basic feasible solution. Use NWCM to obtain initial basic feasible solution :

To From	W_1	W_2	W_3	
F_1	16	20	12	200
F_2	14	8	18	120
F_3	26	24	16	130
	180	120	150	

(b) Suggest an optimal assignment policy for the given assignment problem :

Jobs