B. Sc. Fire (Technology) Examination

April / May - 2003

Applied Mathematics

Time: 3 Hours] [Total Marks: 70

Instructions: (1) All questions are **compulsory**.

- (2) Figures to the **right** indicate **full** marks of the question.
- (3) Non-programmable scientific calculators are permitted.
- (4) Assume suitable additional data, that may be necessary.
- 1 (a) A line makes angles α, β, γ and with δ the diagonals 5 of a cube. Prove that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta = \frac{4}{3}$.

OR

- (a) If $\begin{vmatrix} \rightarrow & \rightarrow \\ A+B \end{vmatrix} = \begin{vmatrix} \rightarrow & \rightarrow \\ A-B \end{vmatrix}$ find the angle between $\begin{vmatrix} \rightarrow & \rightarrow \\ A \end{vmatrix}$ and $\begin{vmatrix} \rightarrow & \rightarrow \\ B \end{vmatrix}$.
- (b) Attempt any **three** from the following:
 - (1) Define cross product of two vectors. Explain properties of it.
 - (2) Constant forces $\stackrel{\rightarrow}{P} = 2\hat{i} 5\hat{j} + 6\hat{k}$ and $\stackrel{\rightarrow}{Q} = -\hat{i} + 2\hat{j} \hat{k}$, acting on a particle. Determine the work done when the particle is displaced from A to B. The position vectors of A and B being $4\hat{i} 3\hat{j} 2\hat{k}$ and $6\hat{i} + \hat{j} 3\hat{k}$.

- (3) Find a unit vector, parallel to the sum of vectors $\overrightarrow{R_1} = 2 \hat{i} + 4 \hat{j} 5 \hat{k} , \quad \overrightarrow{R_2} = \hat{i} + 2 \hat{j} + 3 \hat{k}.$
- (4) If $\overrightarrow{A} = \hat{i} + 2 \hat{j} + 3 \hat{k}$, $\overrightarrow{B} = -\hat{i} + 2 \hat{j} + \hat{k}$ and $\overrightarrow{C} = 3 \hat{i} + \hat{j}$, find t such that $(\overrightarrow{A} + t \overrightarrow{B})$ is perpendicular to \overrightarrow{C} .
- (5) Explain: Direction cosines.
- (6) Using vector analysis, prove that $sin(A+B) = sin A \cdot cos B + cos A \cdot sin B$.
- (a) (1) Give definition of convergence of a series and state the necessary condition for convergence of positive terms series.
 - (2) Examine the convergence of the series $1+2+3+....+n+...+\infty$

OR

- (a) Give statement and proof for the convergence of "Geometric series."
- (b) Test for convergence any **three** series from the following:
 - (1) $\sum_{n=0}^{\infty} \frac{3^{2n}}{2^{3n}}$
 - (2) $\sum_{n=1}^{\infty} \frac{1}{1+2^{-n}}$
 - (3) $1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} + \dots + \infty$
 - (4) $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots \infty$

3 (a) State and prove : Leibnitz's theorem, for the nth
5 derivative of the product of two functions.

OR

- (a) State and prove: "Cauchy's Mean-Value Theorem". 5
- (b) Attempt any **three**:
 - (1) If $x = a \cos^3 \theta$, $y = b \sin^3 \theta$. find y_2 .
 - (2) If $y = e^{ax} \sin bx$, prove that $y_2 2ay_1 + (a^2 + b^2)y = 0$
 - (3) If $y = (\sin^{-1} x)^2$, show that $(1-x^2) y_{n+2} (2n+1)xy_{n+1} n^2 y_n = 0.$
 - (4) If $ax^2 + 2hxy + by^2 = 1$, prove that

$$y_2 = \frac{h^2 - ab}{\left(hx + by\right)^3}.$$

- (5) Using Maclaurin's series, expand $\tan x$, upto term containing x^5 .
- (6) Explain e^x in powers of (x-1) upto four terms.
- **4** (a) Explain Homogeneous functions. State and prove **6** Euler's theorem on homogeneous functions.

OR

- (a) Define: Increasing and decreasing functions. Give one example of each function.
- (b) Attempt any **two**:
 - (1) If $\sin u = \frac{x^2 y^2}{x + y}$, then using Euler's theorem prove

that,
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3 \tan u$$
.

(2)	f	f(x, y) =	$=\frac{1}{x^2}$	$+\frac{1}{xy}+$	$\frac{\log x - \log y}{x^2 + y^2}$,	then	by	using
-----	---	-----------	------------------	------------------	-------------------------------------	---	------	----	-------

Euler's theorem prove that $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} + 2f(x, y) = 0$.

For that values of x, the function (3)

$$x^3 - 3x^2 - 9x + 22$$
 is :

- (1) Increasing
- (2) Decreasing
- (3) Stationary

Also find stationary values of the function.

- Find the maximum and minimum values of $x^{5} - 5x^{4} + 5x^{3} - 1$
- Find the centre of gravity of a uniform hollow cone of height h.
- 5 Evaluate the following integers : (any **three**) 12

$$(1) \quad \int \left(\frac{\cos x}{1 + \cos x}\right) dx$$

$$(2) \qquad \int \left(\frac{x^5 - 1}{x - 1}\right) dx$$

(3)
$$\int \left(\frac{x^3}{x^2 - a^2}\right) dx, \left(x^2 > a^2\right)$$
 (4)
$$\int \left(x^2 e^{3x}\right) dx$$

$$(4) \quad \int \left(x^2 e^{3x}\right) dx$$

$$(5) \quad \int \left(\frac{\sin 5x}{\sin x}\right) dx$$

Find the area of the region bounded by the circle 2 $x^2 + v^2 = r^2$

OR

Prove that the area of the region enclosed by

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1; (a > b)$ is πab .

2